
Eruptive Active Region 11492 ( 6 March 2012)Question: Can transient small-scale 
brightenings predict major solar 

eruption?

Methods: Transient brightenings 
identified from active region light 
curves and correlated with local 
evolution of the magnetic field

Outcome: Clear differences between 
eruptive and non-eruptive active 

regions (linear versus step-like 
progression) à promising proxy for 

solar eruptions
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Top) temporal evolution of helicity budget of AR12962 
Bottom) Evolution of Bz component of CME in EUHFORIA

Question: How to estimate near-Sun 
CME magnetic field from source active 

region (AR) helicity?

Methods: Combine magnetic helicity 
in the lower solar atmosphere with 

outer coronal geometric CME 
modelling to estimate near-Sun CME 

magnetic field. 
Outcome: Refined methodology to assess 
near-Sun CME magnetic field strength using 

the source helicity budget, enabling 
quantitative determination of CME chirality and 

magnetic flux for propagation models. The 
estimated power-law index for magnetic field 

evolution aligns well with near-Sun 
observations (e.g. PSP).
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Extrapolated coronal fileds and jumps in the R-value 
before the X-class flare (dashed line) for AR 11158

Question: How can we provide early 
warnings of solar flares?

Methods Analysis of R-value - a flux-
based parameter in the lower solar 
atmosphere - after extrapolation of 

photospheric magnetic field.

Outcome R-value behaves differently for 
flaring and non-flaring ARs, could spike 
48-68 hrs before a 'flux emerging' flaring 

AR à advance warning

Shreeyesh Biswal (ESR3)
Host: University of Sheffield, UK 
Secondment: University of Ioannina/Academy of Athen, Greece 
Supervisors: Robert Erdelyi, Manolis Georgoulis, Spiros Patsourakos, 
Alexander Nindos
Industrial training: AstroTech, Hungary
Project: Three-dimensional solar flare forecasting
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atmosphere, Astrophys. J. 974, doi:10.3847/1538-4357/ad6c33, 2024

activity (Toriumi 2022). However, since we find the jump in
R-value at about the same time, we hypothesize that the jump in
R-value could be linked to flaring activity, although a statistical
study may still be needed to verify this. The exact procedure of
identifying a jump in R-value is discussed in the next
paragraph. For the purpose of simplicity, we introduce two
parameters; (i) Tfe denoting the time of flux emergence near
PILs on the photosphere and (ii) Tfo denoting the latest time-
stamp in our data set just before flare onset. For ARs 11158,
12017, and 12673, Tfe indicates the time when a sharp increase
in the unsigned flux was observed. For AR 11166, Tfe indicates
the time when the flux shows a consistently increasing trend
following a period of decrease. Table 3 lists the values of the
unsigned flux around PILs and the photospheric R-values at Tfe
and Tfo. Using these values, we can make a quantitative
estimate of the increase of these parameters. For example, in
case of AR 11158, the flux at Tfo was about five times the value
at Tfe, while the photospheric R-value at Tfo was about 10 times
the value at Tfe. This suggests that for AR 11158, high-gradient
PILs contribute to a higher share in the total flux around PILs
immediately before a flare compared to the time when flux

emergence is observed. Similar trends are seen for ARs 11166,
12017, and 12673 (refer to Table 3).
AR 11158 hosted the first X-class flare of SC24 at 01:44

UTC on 2011 February 15. The sunspot group that was βγ-type
on 2011 February 11, transformed into a βγδ-type sunspot on
February 16, within a day of the eruption of the X2.2 flare. It
can be seen from Figure 3(a) that flux levels on February 16
were higher compared to the preflare levels (Feb 11–12). Let us
consider the R(150,15) trends in height for AR 11158
(Figure 4(a)). It may be seen that at some time around Tfe at
0.36Mm altitude, the black line (denoting null output from the
code; owing to weak fields not breaching Bth) disappears and
R(150,15) suddenly jumps. This suggests that strong magnetic
flux begins to emerge at 0.36 Mm at around Tfe. This is also
indicative of a high-gradient PIL setup in the extrapolated
magnetic field map at 0.36Mm. At higher altitudes (up to
1.44 Mm), the jump in R(150,15) is observed at later moments in
time compared to the temporal variation seen at 0.36 Mm. For
R(150,15), we consider the height range of 0.36–1.44Mm as the
OHR. So, here, the OHR is to be understood as a collection of
heights where a clear and sustained jump in R-value is
observed. Please note here that a jump is identified in retrospect

Figure 4. Multiple-height stack plots for (a) R(150,15), (b) R(100,15), and (c) R(50,15); vertical dashed line indicates the time of occurrence of the X2.2 flare; colorbar
indicates the logarithm of R-value (in Mx); any black lines or points indicate null output. The OHRs in this case are as follows: (a) 0.36–1.44 Mm, (b) 0.36–2.52 Mm,
and (c) 1.08–3.24 Mm. For R(50,15), we do not consider 0.72 Mm within the OHR because the black line is continuous for less than 6 hr.

Table 3
Table Comparing Changes in R(150,15) and f for ARs 11158, 11166, 12017, and 12673 at Tfe and Tfo in the Photosphere

Unsigned Flux f Near PILs and R(150,15) (Both in 1020 Mx) at Tfe and Tfo

AR Tfe f (Tfe) R(150,15) (0 Mm) Tfo f (Tfo) R(150,15) (0 Mm)

11158 2011/02/13 01:00 5.63 0.24 2011/02/15 01:00 25.54 2.31
11166 2011/03/06 16:00 5.93 0.18 2011/03/09 23:00 30.76 2.40
12017 2014/03/28 00:00 2.94 0.05 2014/03/29 17:00 8.30 0.76
12673 2017/09/03 18:00 12.70 0.87 2017/09/06 06:00 61.17 7.35
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Second, starting with the 3D data-grid, the unsigned flux f
near PILs and R-value are computed in the 0–3.24Mm height
range at 1 hr cadence for the time windows specified in Table 2
(Section 3). The codes used to compute the unsigned magnetic
flux near PILs and R-value are adapted from the FLARECAST
Bitbucket Project Repository.10 The algorithm used for
computing the R-value is an adaptation of the one described
in Schrijver (2007). The difference is that we use the radial
field component from vector magnetograms, while Schrijver
(2007) used the line-of-sight (LoS) component. Estimating
the R-value relies on two input parameters: magnetic field
threshold Bth and separation distance Dsep, which control the
identification of high-gradient PILs. The threshold Bth is used
to compute bitmaps corresponding to positive and negative
flux. In the positive polarity bitmap, the elements are assigned
the value “1” where Bz>+ Bth and “0” otherwise. Similarly, in
the negative-polarity bitmap, the elements are assigned the
value “1” where Bz<− Bth and “0” otherwise. These bitmaps
are then dilated and their product yields a map M where high-
field regions can be identified from nonzero values. The map
“M’, indicating high-polarity regions, is then convolved
with an area-normalized Gaussian G (characterized by a
FWHM=Dsep), resulting in a weight map W that assigns
more weight to regions closer to high-gradient PILs as opposed
to regions that are further apart (see Equation (1)).

( ) ( ) ( )= *W M B G D . 1th sep

This weight map is then multiplied with the original
magnetogram data (or magnetic field map) Bmap. Examples of
the resulting output maps are shown in Figure 2. The sum
of absolute values of all elements multiplied with an area
element A gives the R-value (see Equation (2)). A (∼0 5) is

approximately 1.3141× 1015 cm2 in CGS units.

| | ( )å=R A B W. . 2
ij

ij ijval map

Third, following the R-value calculation in the photosphere
and above, the data are visualized with the help of stack plots
varying as a function of time (see the GitHub project
repository11 for all stack plots and codes). Since the exact
dependence of R-value on Bth and Dsep is not known, the
R-value is computed for different combinations of Bth and Dsep
(see Table 1). Schrijver (2007) argued that, statistically, a
threshold Bth= 150 G could be used. Since the extrapolated
fields are weaker than photospheric fields, and since our choice
of Bth does not vary with height, using a lower threshold for Bth
is helpful to identify high-gradient PILs at higher altitudes. The
noise level associated with the photospheric data is ∼10 G (Liu
et al. 2012). Therefore, it is not helpful to reduce Bth below
50 G. On Dsep, Schrijver (2007) found that two thirds of the
values of the distribution for D (i.e., the minimum distance
between a PIL and the brightest point in the EUV images) were
less than 15Mm. Hence, Schrijver (2007) took Dsep= 15Mm
for the computation of R-value on the photosphere.

3. AR Dataset

We selected eight ARs that hosted 11 X-class solar flares
within a certain time interval of interest in each case (see
Table 2). We chose these ARs and their corresponding temporal
windows for two main reasons. First, in order to ensure that the
magnetic field data is reliable for extrapolation. Since magnetic
field observations have severe projection effects beyond 60°
from the solar central meridian (Bobra et al. 2014), all these ARs

Figure 1. A 3D visualization of the PF-extrapolated magnetic field for AR 11158 at 00:00 UTC, 2011 February 15, created using Paraview (https://www.paraview.
org/); the colorbar in top right-hand corner denotes the Bz values at the photosphere (map at the bottom of the grid, also reproduced in Figure 2(a)); the colorbar in the
bottom right-hand corner denotes extrapolated Bz values. The colorbars have been saturated to ±1200 G on the photosphere and to ±400 G above the photosphere.
The data has been taken from an ISEE open-source database (https://hinode.isee.nagoya-u.ac.jp/), courtesy of Kusano et al. (2020).

10 https://dev.flarecast.eu/stash/projects/FE/repos 11 https://github.com/shreeyesh-biswal/Rvalue_3D
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Second, starting with the 3D data-grid, the unsigned flux f
near PILs and R-value are computed in the 0–3.24Mm height
range at 1 hr cadence for the time windows specified in Table 2
(Section 3). The codes used to compute the unsigned magnetic
flux near PILs and R-value are adapted from the FLARECAST
Bitbucket Project Repository.10 The algorithm used for
computing the R-value is an adaptation of the one described
in Schrijver (2007). The difference is that we use the radial
field component from vector magnetograms, while Schrijver
(2007) used the line-of-sight (LoS) component. Estimating
the R-value relies on two input parameters: magnetic field
threshold Bth and separation distance Dsep, which control the
identification of high-gradient PILs. The threshold Bth is used
to compute bitmaps corresponding to positive and negative
flux. In the positive polarity bitmap, the elements are assigned
the value “1” where Bz>+ Bth and “0” otherwise. Similarly, in
the negative-polarity bitmap, the elements are assigned the
value “1” where Bz<− Bth and “0” otherwise. These bitmaps
are then dilated and their product yields a map M where high-
field regions can be identified from nonzero values. The map
“M’, indicating high-polarity regions, is then convolved
with an area-normalized Gaussian G (characterized by a
FWHM=Dsep), resulting in a weight map W that assigns
more weight to regions closer to high-gradient PILs as opposed
to regions that are further apart (see Equation (1)).

( ) ( ) ( )= *W M B G D . 1th sep

This weight map is then multiplied with the original
magnetogram data (or magnetic field map) Bmap. Examples of
the resulting output maps are shown in Figure 2. The sum
of absolute values of all elements multiplied with an area
element A gives the R-value (see Equation (2)). A (∼0 5) is

approximately 1.3141× 1015 cm2 in CGS units.

| | ( )å=R A B W. . 2
ij
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Third, following the R-value calculation in the photosphere
and above, the data are visualized with the help of stack plots
varying as a function of time (see the GitHub project
repository11 for all stack plots and codes). Since the exact
dependence of R-value on Bth and Dsep is not known, the
R-value is computed for different combinations of Bth and Dsep
(see Table 1). Schrijver (2007) argued that, statistically, a
threshold Bth= 150 G could be used. Since the extrapolated
fields are weaker than photospheric fields, and since our choice
of Bth does not vary with height, using a lower threshold for Bth
is helpful to identify high-gradient PILs at higher altitudes. The
noise level associated with the photospheric data is ∼10 G (Liu
et al. 2012). Therefore, it is not helpful to reduce Bth below
50 G. On Dsep, Schrijver (2007) found that two thirds of the
values of the distribution for D (i.e., the minimum distance
between a PIL and the brightest point in the EUV images) were
less than 15Mm. Hence, Schrijver (2007) took Dsep= 15Mm
for the computation of R-value on the photosphere.

3. AR Dataset

We selected eight ARs that hosted 11 X-class solar flares
within a certain time interval of interest in each case (see
Table 2). We chose these ARs and their corresponding temporal
windows for two main reasons. First, in order to ensure that the
magnetic field data is reliable for extrapolation. Since magnetic
field observations have severe projection effects beyond 60°
from the solar central meridian (Bobra et al. 2014), all these ARs

Figure 1. A 3D visualization of the PF-extrapolated magnetic field for AR 11158 at 00:00 UTC, 2011 February 15, created using Paraview (https://www.paraview.
org/); the colorbar in top right-hand corner denotes the Bz values at the photosphere (map at the bottom of the grid, also reproduced in Figure 2(a)); the colorbar in the
bottom right-hand corner denotes extrapolated Bz values. The colorbars have been saturated to ±1200 G on the photosphere and to ±400 G above the photosphere.
The data has been taken from an ISEE open-source database (https://hinode.isee.nagoya-u.ac.jp/), courtesy of Kusano et al. (2020).

10 https://dev.flarecast.eu/stash/projects/FE/repos 11 https://github.com/shreeyesh-biswal/Rvalue_3D
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Second, starting with the 3D data-grid, the unsigned flux f
near PILs and R-value are computed in the 0–3.24Mm height
range at 1 hr cadence for the time windows specified in Table 2
(Section 3). The codes used to compute the unsigned magnetic
flux near PILs and R-value are adapted from the FLARECAST
Bitbucket Project Repository.10 The algorithm used for
computing the R-value is an adaptation of the one described
in Schrijver (2007). The difference is that we use the radial
field component from vector magnetograms, while Schrijver
(2007) used the line-of-sight (LoS) component. Estimating
the R-value relies on two input parameters: magnetic field
threshold Bth and separation distance Dsep, which control the
identification of high-gradient PILs. The threshold Bth is used
to compute bitmaps corresponding to positive and negative
flux. In the positive polarity bitmap, the elements are assigned
the value “1” where Bz>+ Bth and “0” otherwise. Similarly, in
the negative-polarity bitmap, the elements are assigned the
value “1” where Bz<− Bth and “0” otherwise. These bitmaps
are then dilated and their product yields a map M where high-
field regions can be identified from nonzero values. The map
“M’, indicating high-polarity regions, is then convolved
with an area-normalized Gaussian G (characterized by a
FWHM=Dsep), resulting in a weight map W that assigns
more weight to regions closer to high-gradient PILs as opposed
to regions that are further apart (see Equation (1)).

( ) ( ) ( )= *W M B G D . 1th sep

This weight map is then multiplied with the original
magnetogram data (or magnetic field map) Bmap. Examples of
the resulting output maps are shown in Figure 2. The sum
of absolute values of all elements multiplied with an area
element A gives the R-value (see Equation (2)). A (∼0 5) is

approximately 1.3141× 1015 cm2 in CGS units.
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Third, following the R-value calculation in the photosphere
and above, the data are visualized with the help of stack plots
varying as a function of time (see the GitHub project
repository11 for all stack plots and codes). Since the exact
dependence of R-value on Bth and Dsep is not known, the
R-value is computed for different combinations of Bth and Dsep
(see Table 1). Schrijver (2007) argued that, statistically, a
threshold Bth= 150 G could be used. Since the extrapolated
fields are weaker than photospheric fields, and since our choice
of Bth does not vary with height, using a lower threshold for Bth
is helpful to identify high-gradient PILs at higher altitudes. The
noise level associated with the photospheric data is ∼10 G (Liu
et al. 2012). Therefore, it is not helpful to reduce Bth below
50 G. On Dsep, Schrijver (2007) found that two thirds of the
values of the distribution for D (i.e., the minimum distance
between a PIL and the brightest point in the EUV images) were
less than 15Mm. Hence, Schrijver (2007) took Dsep= 15Mm
for the computation of R-value on the photosphere.

3. AR Dataset

We selected eight ARs that hosted 11 X-class solar flares
within a certain time interval of interest in each case (see
Table 2). We chose these ARs and their corresponding temporal
windows for two main reasons. First, in order to ensure that the
magnetic field data is reliable for extrapolation. Since magnetic
field observations have severe projection effects beyond 60°
from the solar central meridian (Bobra et al. 2014), all these ARs

Figure 1. A 3D visualization of the PF-extrapolated magnetic field for AR 11158 at 00:00 UTC, 2011 February 15, created using Paraview (https://www.paraview.
org/); the colorbar in top right-hand corner denotes the Bz values at the photosphere (map at the bottom of the grid, also reproduced in Figure 2(a)); the colorbar in the
bottom right-hand corner denotes extrapolated Bz values. The colorbars have been saturated to ±1200 G on the photosphere and to ±400 G above the photosphere.
The data has been taken from an ISEE open-source database (https://hinode.isee.nagoya-u.ac.jp/), courtesy of Kusano et al. (2020).

10 https://dev.flarecast.eu/stash/projects/FE/repos 11 https://github.com/shreeyesh-biswal/Rvalue_3D
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Question: How solar active region 
parameters can be used to enhance 

understanding of active region 
formation and intercycle variations of 

solar acticity?

Methods: Statistical analysis of data 
from Solar Cycles 23, 24 and 25 

provided by SOHO/MDI and SDO/HMI.

Outcome: Polarity separation and 
magnetic flux of active regions follow a 
log-normal distribution, differing from 

the commonly observed log-log 
pattern à refine the source term in 

surface flux transport models, à 
improving solar cycle forecasting. 

Guilherme Nogueira (ESR4)
Host: Eötvös Loránd University, Hungary
Secondment Host: University of Sheffield, UK 
Supervisors:  Kristof Petrovay, Robert Erdelyi 
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Project: Modelling periodic and quasi-periodic variations in solar activity

Log-Normal Relationship Between Polarity 
Separation and Magnetic Flux in Solar Active 

Regions Across Multiple Solar Cycles



Question: How do granulation induced 
waves contribute to the heating of the 

solar chromosphere and solar wind 
generation?

Methods: Numerical two-fluid 
simulations of the lower solar 

atmosphere including ion-neutral 
collisions

Outcome: Dissipation of granulation-
generated waves due to ion-neutral 
collisions can significantly  heat the 
chromosphere and cause outflows. 

Mayank Kumar (ESR5)
Host: Uniwersytet Marii Curie-Skłodowskiej, Poland. 
Secondment Host: University of Helsinki, Finland
Supervisors: Kris Murawski,  Emilia Kilpua
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Project: Global MHD coronal model
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generated chromospheric heating and plasma outflows in two-fluid magnetic arcade, A&A, 975:3, 2024

Simulation results with coupled magneto-
acoustic and Alfvén waves



Question: How to identify and track flux 
ropes in coronal simulations, and what 

triggers their eruptions?

Methods: Compilation of a novel 
algorithm (with GUI) and applying it to 
data-driven magnetofrictional & zero-

beta MHD modelling outputs. 

Outcome: New algorithm can robustly 
identify / track solar flux ropes, enabling 
estimations of their eruptivity and early 

evolution
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Supervisors: Emilia Kilpua, Daniel Price, Jens Pomoell, Stefaan Poedts
Industrial training: ASRO, Finland
Project: CME evolution in the corona

[1] Wagner A. et al. The Automatic Identification and Tracking of Coronal Flux Ropes — Part II: New Mathematical Morphology-based 
Flux Rope Extraction Method and Deflection Analysis, A&A, doi:10.1051/0004-6361/202348113, 2024; [2] Wagner, A. , et al., Solar 
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Solar flux rope indentified from the data-
driven simulation output



Evolution of Particle Distributions Without 
(Left) and With (Right) Magnetic 

Inhomogeneity-Induced Adiabatic Focusing
Question: How does the coronal 

environment govern the acceleration 
and transport of energetic particles at 

CME-driven shocks?

Methods: Test-particle Monte Carlo 
simulation studies with realistic coronal 
conditions integrated from the MHD-

based COCONUT model

Outcome: A refined approach to SEP 
acceleration and transport, improving 

the accuracy of particle transport 
modeling
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Host: University of Turku, Finland
Secondment Host: KU Leuven, Belgium
Supervisors: Rami Vainio, Stefaan Poedts
Industrial training: ASRO, Finland
Project: Particle acceleration at coronal shocks
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Simulation of particle propagation in the 
flux rope with cross-field diffusion

Question: How do the corona and 
interplanetary medium affect the 

propagation of energetic particles 
coming from the Sun?

Methods: New combinations of a 
particle transport code with advanced 
heliospheric and coronal MHD models 

developed and tested

Outcome: Enhanced capture of shock-
driven particle acceleration in the solar 

wind; strong perpendicular proton 
diffusion in CME flux ropes at very small 

mean free path ratios
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Clim.  14, doi:10.1051/swsc/2024009, 2024  [2] Husidic, E. et al., Cross-Field Diffusion Effects on Particle Transport in a Solar 
Coronal, ApJ Letters, 976, doi:10.3847/2041-8213/ad8d56, 2024



The importance of geometry for 
forecasting CME arrival

Question: How to improve drag-based 
model (DBM) forecasts for predicting 
the arrival of coronal mass ejections 

(CME) at Earth or other location in the 
inner heliosphere?

Methods: Implementation of a cone 
CME geometry to DBM model, and 

model validation with a new multipoint 
CME database built for the project

Outcome: CME impact properties and 
arrival times can be estimated with 

enhanced accuracy

Ronish Mugatwala (ESR9)
Host: Università degli Studi di Roma Tor Vergata, Italy 
Secondment Host: University of Sheffield, UK. 
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Question: How can Artificial 
Intelligence techniques improve solar 

flare forecasting? 

Methods: A novel deep learning model 
using coronal EUV images and line-of-

sight magnetograms

Outcome: Model using EUV images
outperforms model using

magnetograms

Grégoire Francisco (ESR10)
Host: Università degli Studi di Roma Tor Vergata, Italy
Secondment Host: University of Coimbra, Portugal
Supervisors:  Dario del Moro, Teresa Barata
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Model estimations (red cross) against the truth 
(blue dot) for the 17 February  2020 event
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Question: How can Machine Learning 
(ML)  techniques improve predictions of 

coronal mass ejection (CME) arrival?

Methods: New supervised learning 
approaches implemented to existing 

CME arrival prediction tools (CAT-
PUMA and DBM) and estimating their 

limitations

Outcome: The use of ML techniques 
can improve CME arrival predictions, 

but robust methods are needed to 
evaluate their performance

Simone Chierichini (ESR11)
Host: University of Sheffield, UK
Secondment Host: Università degli studi di roma Tor Vergata, Italy. 
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Project: CME arrival modelling with Machine Learning

[1] Chierichini S. et al., CME arrival Modelling with Machine Learning, ApJ, 963, doi:10.3847/1538-4357/ad1cee, 2024 
[2] Chierichini, et al., Bayesian approach to the drag-based modelling of ICMEs, J. Space Weather Space Clim., 14, 
doi:10.1051/swsc/2023032, 2024

SHAP (SHapley Additive exPlanations) 
summary plot for the training set

correctly classified. Low precision directly implies a high false
alarm ratio. Despite this, the model still shows potential for
operational application because of the high Recall. In fact, of
686 events labeled as Earth impacting, only 13 are predicted
incorrectly.

4.3. Interpretation of Results

One of the main challenges leveled at prediction tools based
on machine-learning algorithms is that it is difficult to judge
their actual capabilities and limitations because there is often no
way of getting a sense of the process that drives the models to
produce a specific prediction.

In addition, hard-to-interpret models such as deep neural
networks and gradient-boosting machines are increasingly
efficient and now outperform in most cases linear models that
are typically easier to interpret. The main consequence of the
lack of interpretation is the distrust in the model.

The subject of model interpretation has been widely
discussed in recent years and various methods have emerged
to try to better understand the results obtained by artificial
intelligence. Local explanation methods aim to assess the
influence of input variables/features on a specific prediction/
output.

In this paper, we employ one of these tools, called Shapley
values (Lundberg & Lee 2017), to gain more insights into
model decisions. Shapley values are model-agnostic local
explanation markers originated in the field of game theory to
determine the payouts of players depending on their contrib-
ution to the total payout (Aas et al. 2021). In an artificial
intelligence explanation setting, this method is used to calculate
the contribution of each feature to the final output. In particular,
this technique allows us to decompose the output of a model

( ¯)xf , where x̄ is a specific feature vector, into the sum of the
contributions f of each feature:
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Considering a set of F features and a subset S⊆ F= {1,K,F}
consisting of |S| features; the Shapley value related to feature j
can be expressed as
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where c(S) is the contribution function that maps subsets of
features to the contribution they have on the prediction. Such
function is typically the expected output of the model,
conditional on the feature vector xS:

( ) [ ( ) ! ¯ ] ( )x x xc S E f . 2S= =

In essence, the Shapley values determine the difference in the
contribution that features j bring to the prediction if included in
a specific subset S, and average this over every possible
combination of possible subsets S of features in terms of the
contribution function: c (subset S including feature j)− c
(subset S without feature j).

In this work, we used the python package https://shap.
readthedocs.io/en/latest/SHAP (SHapley Additive exPlanations)

to apply the theory of Shapley values to the predictions made for
CMEs and try to obtain some more information on the feature
space of the CAT-PUMA framework. Since we tested different
machine-learning models, we opted to deal in more detail with the
cases where performance is highest, to determine whether there
are patterns that characterize the best-performing models. Let us
now start by treating the regression case and then discuss the
classification task, as it was done with the description of the
results.

4.3.1. Regression

For the regression case, we considered the SVM model
trained on the data set v1. One of the main tools offered by the
SHAP algorithm is the summary plot in Figure 5(a), which
shows for each feature the SHAP values of all instances in the
training set. This plot contains a wealth of information about
the predictions made by the model. Let us break down the
main ones.
First of all, the features on the y-axis are ordered in

ascending order (from bottom to top) according to the average
contribution they have on the predictions. This means that,
according to SHAP, the feature with the greatest influence on
the predictor output is the average speed of CMEs followed by
angular width, final speed, and sunspot number R, while the
least influential features are the SW plasma speed and pressure.

Figure 5. ((a), top) SHAP summary plot for the training set. The y-axis ranks
the features sorted from the most (top) to least (bottom) important. The x-axis
depicts the SHAP value. Each point refers to a specific instance of the training
set, pointing out the related SHAP value associated with a value of a certain
feature. The color bar displays whether the feature value is high (pink) or low
(blue). ((b), bottom) SHAP decision plot for the training set. This plot shows
the decision path for each instance in the training set. Each line shows each
feature’s contribution (y-axis) to the final output of the model (x-axis). The
color depends on the magnitude of the output and ranges from blue for lower
output values to red for higher ones.
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